Protein kinase A–dependent modulation of Ca2+ sensitivity in cardiac and fast skeletal muscles after reconstitution with cardiac troponin
نویسندگان
چکیده
Protein kinase A (PKA)-dependent phosphorylation of troponin (Tn)I represents a major physiological mechanism during beta-adrenergic stimulation in myocardium for the reduction of myofibrillar Ca2+ sensitivity via weakening of the interaction with TnC. By taking advantage of thin filament reconstitution, we directly investigated whether or not PKA-dependent phosphorylation of cardiac TnI (cTnI) decreases Ca2+ sensitivity in different types of muscle: cardiac (porcine ventricular) and fast skeletal (rabbit psoas) muscles. PKA enhanced phosphorylation of cTnI at Ser23/24 in skinned cardiac muscle and decreased Ca2+ sensitivity, of which the effects were confirmed after reconstitution with the cardiac Tn complex (cTn) or the hybrid Tn complex (designated as PCRF; fast skeletal TnT with cTnI and cTnC). Reconstitution of cardiac muscle with the fast skeletal Tn complex (sTn) not only increased Ca2+ sensitivity, but also abolished the Ca2+-desensitizing effect of PKA, supporting the view that the phosphorylation of cTnI, but not that of other myofibrillar proteins, such as myosin-binding protein C, primarily underlies the PKA-induced Ca2+ desensitization in cardiac muscle. Reconstitution of fast skeletal muscle with cTn decreased Ca2+ sensitivity, and PKA further decreased Ca2+ sensitivity, which was almost completely restored to the original level upon subsequent reconstitution with sTn. The essentially same result was obtained when fast skeletal muscle was reconstituted with PCRF. It is therefore suggested that the PKA-dependent phosphorylation or dephosphorylation of cTnI universally modulates Ca2+ sensitivity associated with cTnC in the striated muscle sarcomere, independent of the TnT isoform.
منابع مشابه
Phosphorylation of skeletal-muscle troponin I and troponin T by phospholipid-sensitive Ca2+-dependent protein kinase and its inhibition by troponin C and tropomyosin.
Skeletal-muscle troponin I and troponin T were found to be rapidly phosphorylated by cardiac phospholipid-sensitive Ca2+-dependent protein kinase, with Km values of 6.66 and 0.13 microM respectively. Stoichiometric phosphorylation of skeletal troponin I (endogenous phosphate content 0.7 mol/mol) indicated that the Ca2+-dependent enzyme and cyclic AMP-dependent protein kinase incorporated 0.9 an...
متن کاملCardiac enzyme in emergency medicine
Objective: Acute chest pain is an important and frequently occurring symptom in patients. Chest pain is often a sign of ischemic heart disease. Chest pain due to suspected Acute Coronary Syndrome (ACS) is responsible for a large and ijncreasing number of hospital attendances and admissions. Current practice for suspected ACS involves troponin testing 10–12 hours after symptom o...
متن کاملHypertrophic Cardiomyopathy Cardiac Troponin C Mutations Differentially Affect Slow Skeletal and Cardiac Muscle Regulation
Mutations in TNNC1-the gene encoding cardiac troponin C (cTnC)-that have been associated with hypertrophic cardiomyopathy (HCM) and cardiac dysfunction may also affect Ca2+-regulation and function of slow skeletal muscle since the same gene is expressed in both cardiac and slow skeletal muscle. Therefore, we reconstituted rabbit soleus fibers and bovine masseter myofibrils with mutant cTnCs (A8...
متن کاملThe most sensitive double-marker method of cardiac isoenzymes of creatinine kinase, troponin I, and myoglobin in different time periods for diagnosing acute myocardial infarction
Purpose: Myocardial infarction is among the most common diagnoses in patients admitted to hospitals in western countries, and its rapid diagnosis is of utmost importance. This study was conducted to determine the most sensitive double-marker cardiac isoenzyme of creatinine kinase, troponin I, and myoglobin for diagnosing acute myocardial infarction. Materials and Methods: This was an ...
متن کاملTroponin and Titin Coordinately Regulate Length-dependent Activation in Skinned Porcine Ventricular Muscle
We investigated the molecular mechanism by which troponin (Tn) regulates the Frank-Starling mechanism of the heart. Quasi-complete reconstitution of thin filaments with rabbit fast skeletal Tn (sTn) attenuated length-dependent activation in skinned porcine left ventricular muscle, to a magnitude similar to that observed in rabbit fast skeletal muscle. The rate of force redevelopment increased u...
متن کامل